实数是什么?

实数是什么?

实数是什么?在数学中,实数是有理数和无理数的总称,前者如、-4}、81/7;后者如√2,π等。实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。但仅仅以枚举的方式不能描述实数的全体。实数和虚数共同构成复数。

根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1公分的正方形为例,其对角线有多长?在规定的精度下(比如误差小于0.001公分),总可以用有理数来表示足够精确的测量结果(比如1.414公分)。但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:

任何两条线段(的长度)的比,可以用自然数的比来表示。
正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1,2,3…),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击;见第一次数学危机。

从古希腊一直到17世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。在当时,尽管虚数已经出现并广为使用,实数的严格定义却仍然是个难题,以至函数、极限和收敛性的概念都被定义清楚之后,才由十九世纪末的戴德金、康托尔等人对实数进行了严格处理。

所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。